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HF is a systemic disorder 



Exercise capacity and pathology of HF 



Modified, Piepoli MF. BMJ 2004; 328: 189 
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1. Improve exercise capacity (peak VO2, AT) 

2. Minor change in cardiac function (LV systolic function and 

remodeling) 

3. Improve endothelial function (Coronary and peripheral 

circulation) 

4. Improve ventilation 

5. Improve autonomic nerves function 

6. Improve skeletal muscle abnormalities 

Effects of exercise therapy for heart failure 

Exercise therapy is a highly ideal 

treatment for HF and is a standard of care. 
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Dobutamine does not increase exercise capacity 
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Leg bicycle  

ergometer 

Does heart regulate peak whole body exercise capacity? 

Jondeau G, et al. Circulation 1992; 101: 219S-222S 
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Skeletal muscle is impaired in patients with HF 

Drexler H, et al. Circulation 

1992; 85: 1751-9 

Decreased mitochondrial 

enzyme (cyto C) 

HF 

Control 

Sabbah HN, et al. Circulation 

1993; 87: 1729-37 

HF 

Control 

Decreased slow twitch 

fiber and capillary 

Skeletal muscle metabolism 

Okita K, et al. Circulation 1998; 

98: 1886-91 

Impaired metabolism 

independent on blood flow 



Energy metabolism in the skeletal muscle during exercise 
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What is happening in skeletal muscle during whole body exercise? 
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Fig 2-2. Muscle metabolism during maximal bicycle exercise. The phosphocreatine  
was nearly depleted at peak exercise in both groups. Muscle pH was more severely  
decreased in patients than in controls ..

Impaired skeletal muscle metabolism 

Decreases in phosphocreatine and pH are larger in patients with HF. 

Okita K, et al. Circulation 1998; 98: 1886-91 
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Association between IMCL and exercise capacity 
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Hülsmann M, et al. Eur J Heart Fail 2004; 6: 101-7 

Survival rate is lower in low knee flexors strength group 

(<68NmX100/kg) than in high group. 

Muscle strength and survival rate 
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Skeletal muscle mass and muscle strength/endurance capacity 

Fulster S, et al. Eur Heart J. 2013;34:512-9 
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Sarcopenia and HF 

• Elderly people aged 60 to 70 years with sarcopenia are 5 to 13 %. 

 

 

• HF patients (mean age of 66.9) with sarcopenia are 19.5%. 

von Haehling S. et al. Int J Biochem Cell Biol. 2013; 45: 2257-65  
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Morphology Histology Biochemistry Others 

Muscle wasting 

Muscle fiber atrophy

（IIb） 
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Glycolytic enzymes 
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metabolism 
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Capillary density 
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  Mitochondrial volume eNOS   

  Apoptosis     

Skeletal muscle abnormalities in HF 

Okita K, et al. Circ J 2013; 77: 293-300 

Skeletal muscle abnormalities are largely associated with the limited exercise 

capacity in patients with HF and are the target of exercise therapy. 

Impaired mitochondrial 

function and decrease in 

mitochondrial volume 

Muscle atrophy and 

decrease in muscle 

strength 
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Kinugawa et al. Int Heart J 2015; 56:475-84  
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Kadoguchi T, et al. Exp Physiol 2015; 100: 312-22  
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Ang II enhances ROS by activated NAD(P)H 

oxidase in skeletal muscle 

Kadoguchi T, et al. Exp Physiol 2015; 100: 312-22  



Morphology Histology Biochemistry Others 

Muscle wasting 

Muscle fiber atrophy

（IIb） 

  

Type I fibers 

Type II fibers 

Shift from type IIa to 

IIb 

 

Oxidative enzymes 

Glycolytic enzymes 

Impaired energy 

metabolism 

Ergoreflex 

Capillary density 
Shift from MHC1 to 

MHC2 
  

  Mitochondrial volume eNOS   

  Apoptosis     

Ang II induces all skeletal muscle abnormalities 

clinically observed in HF 

Ang II ROS Skeletal muscle abnormalities 

Okita K, et al. Circ J 2013; 77: 293-300 



Pedersen BK, et al. Nat Rev Endocrinol 2012; 8: 457-65 

Skeletal muscle is a huge endocrine organ 



Conclusion 

Skeletal muscle abnormalities play an important role in the 

pathogenesis of HF. However, no therapy targeting skeletal 

muscle abnormalities has been developed. Developing new drug 

therapy may be useful for treatment of patients with severe HF 

who can not perform exercise. 

 

We need to clarify the mechanism for skeletal muscle 

abnormalities in HF and to develop new treatment targeting 

them. 


